
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Tel.: +44 12

E-mail addr
Journal of Fluids and Structures 23 (2007) 1149–1167

www.elsevier.com/locate/jfs
Viscous waves and wave-structure interaction in a
tank using adapting quadtree grids

D.M. Greaves�

Department of Architecture and Civil Engineering, University of Bath, Claverton Down BA2 7AY, UK

Received 2 June 2006; accepted 12 April 2007

Available online 13 June 2007
Abstract

Viscous waves and waves over a submerged cylinder in a stationary tank are simulated using a volume-of-fluid

numerical scheme on adaptive hierarchical grids. A high resolution interface-capturing method is used to advect the free

surface interface and the Navier–Stokes equations are discretised using finite volumes with collocated primitive

variables and solved using a Pressure Implicit with Splitting of Operators (PISO) algorithm. The cylinder is modelled by

using the technique of Cartesian cut cells. Results of flow of a single fluid past a cylinder at Reynolds number Re ¼ 100

are presented and found to agree well with experimental and other numerical data. Viscous free surface waves in a tank

are simulated using uniform and quadtree grids for Reynolds numbers in the range from 2 to 2000, and the results

compared against analytical solutions where available. The quadtree-based results are of the same accuracy as those on

the equivalent uniform grids, and retain a sharp interface at the free surface while leading to considerable savings in

both storage and CPU requirements. The nonlinearity in the wave is investigated for a selection of initial wave

amplitudes. A submerged cylinder is positioned in the tank and its influence on the waves as well as the hydrodynamic

loading on the cylinder is investigated.
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1. Introduction

There are many engineering applications where simulation of a viscous fluid with a free surface is important. For

example, wave sloshing in tanks, green water on ship decks, wave loading and run-up on marine and coastal structures.

Fully nonlinear waves and wave-body interactions have been solved by potential-based methods (Dommermuth and

Yue, 1987; Ma et al., 2001a, b) for inviscid fluid flow, and useful results obtained for inertia driven effects, such as

diffraction and wave impact loading. However, in some situations, such as the response of a floating wave energy

conversion device, flow separation, turbulence and wave breaking all make significant contributions to the fluid loading.

In these cases, the fluid viscosity must be accounted for, which usually means solving the full Navier–Stokes equations

or Reynolds Averaged Navier–Stokes (RANS) equations if the flow is turbulent. Accurate modelling of a viscous fluid

free surface flow is an extremely challenging problem in CFD because of the moving air–water interface together with
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the nonlinear governing equations and boundary conditions. To model wave breaking a two-fluid approach may be

taken, in which the fluid flow equations are solved both in air and water so that complex free surface motions can be

modelled. The accuracy of the simulation depends on calculating the correct position of the air/water interface

throughout the wave motion, and this becomes especially difficult when the wave overturns and merges with the water

surface or when the interface breaks up into spray.

Various techniques by which to predict the position of a moving free surface may be classified as interface tracking

methods, which include moving mesh, front tracking [e.g. Hyman (1984)] and particle tracking schemes [e.g. Monaghan

(1994)]; and interface-capturing methods, which include volume of fluid (VoF) and level set techniques (Losasso et al.,

2005). Moving mesh and front tracking methods may be accurate, but can only calculate waves up to the limit of

breaking as the free surface has to be single valued. Particle tracking methods tend to be expensive, although so-called

meshless methods, such as smooth particle hydrodynamics, SPH, described by Monaghan (1994) and the Meshless

Local Petrov–Galerkin (MLPG) method described by Lin and Atluri (2001) have become more popular recently.

These have the advantage of eliminating the need for complicated mesh boundary tracking, as they rely on integrations

over a distribution of points rather than a closed mesh. On the other hand, front capturing methods can be used for

modelling large-scale deformations of the interface, including wave break-up and merging. Front capturing methods

differ from front tracking in that the solution is calculated in the combined air and water fluid domains, with the fluid

properties changing at the interface. The interface is then located from the zero contour of a distance function in the

case of level set [see Causon (1996)] or from the volume fraction field in the VoF method introduced by Hirt and

Nichols (1981).

The basic VoF methodology is robust and flexible and VoF schemes are widely used [e.g. Hirt and Nichols (1981),

Tomiyama et al. (1993), Andrillon and Alessandrini (2004)]. The major drawbacks of this method are its tendency to

smear the interface and the high CPU cost due to the need for fine grids and small time steps. In order to overcome

these problems, a new method is proposed in this work in which the high resolution Compressive Interface Capturing

Scheme for Arbitrary Meshes (CICSAM) interface advection scheme, derived by Ubbink (1997), is implemented on

adapting quadtree grids, described by Greaves and Borthwick (1998). The Navier–Stokes equations are solved using a

version of Issa’s (1986) PISO together with collocated variables. Special interpolations are needed at the interface

between panels of different size, i.e. at hanging nodes. Adapting quadtree grids provide extra resolution locally in areas

of interest and have proved successful in the simulation of separated flows by Greaves and Borthwick (1998), where the

overall size of the grid is reduced significantly for a given accuracy by providing high resolution where the flow variables

are changing most rapidly. The adapting quadtree grids are combined with Cartesian cut cells [see Qian et al. (2003)] in

order to model the curved cylinder boundary smoothly.

The work described here builds on earlier work in which a quadtree VoF method was developed for two-fluid

interface flows and applied to simulation of water column collapse involving large-scale deformation of the free surface

described by Greaves (2004, 2005). Here, the scheme is applied to a series of standing waves in a tank for which the

linearised analytical solution is available. A major contribution of the present work is the incorporation of Cartesian cut

cells with the adaptive quadtree grid-based VoF method. This enables a curved body, such as the cylinder, to be

modelled smoothly and hence wide range of fluid–structure interaction applications to be tackled. Moving boundaries

are easily accommodated by the Cartesian cut cell method, simply by recalculating the cuts between the boundary

contour and background grid for as long as the motion continues.

The paper is organised as follows. First, the mathematical formulation and discretisation procedure is discussed

in Section 2; then, quadtree grids are described in Section 3, and in Section 4 implementation of the Cartesian cut cell

technique on quadtree grids is described. Results are presented in Section 5; initially vortex shedding flow past a

cylinder in a single fluid at Re ¼ 100 is simulated to demonstrate the quadtree grid adaptation with Cartesian cut cells.

Next, the adapting quadtree grids, combined with CICSAM interface advection, are used to calculate viscous waves in a

stationary tank, with the grid adaptation following the movement of the free surface. Finally, the influence of a

submerged cylinder on the viscous waves in a tank is investigated by combining the free surface method with Cartesian

cut cells for the cylinder. Conclusions and recommendations for further work are given in Section 6.
2. Mathematical formulation

The governing equations in primitive form for a two-dimensional incompressible flow are the mass conservation

equation

qðruÞ

qx
þ

qðrvÞ

qy
¼ 0 (1)
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and the Navier–Stokes momentum conservation equations

qu

qt
þ

qu2

qx
þ

quv

qy
¼ �

1

r
qp

qx
þ nr2u, (2)

qv

qt
þ

quv

qx
þ

qv2

qy
¼ �g�

1

r
qp

qy
þ nr2v, (3)

where x and y define an orthogonal Cartesian coordinate system, u and v are the corresponding velocity components,

t is time, p is pressure, r is the fluid density, g is the gravitational acceleration and n is the fluid kinematic viscosity.

For situations where the fluid viscosity is variable, such as the two-fluid flow simulations considered here, an extra

diffusion term appears in the momentum equations which, written in tensor form, is given by

q
qxj

n
quj

qxj

� �
. (4)

Thus, the expanded momentum equations become
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� �
. (6)

The governing equations are discretised using finite volumes with collocated primitive variables. In order to solve for

the velocity and pressure field, we need to couple the momentum and continuity equations in some way. Various

approaches to this are used in the literature. In this work, Issa’s (1986) PISO algorithm is used, which stands for

Pressure Implicit with Splitting of Operators, in which the momentum equation is substituted into the continuity

equation to derive a Poisson equation for pressure. Adams-Bashworth time stepping [see Ferziger and Perić (1996)] is

used for the time dependent calculations.

The PISO algorithm is combined with a VoF scheme for the two-fluid flow simulations. When considering the

incompressible flow of two immiscible fluids, the divergence free velocity field u(x,t) obeys

= � u ¼ 0. (7)

The location of the two fluids is specified using a volume fraction function, C, with C ¼ 1 inside one fluid and C ¼ 0 in

the other. Cells for which C lies between 0 and 1 contain the interface. The volume conservation of the first fluid can be

expressed as

qC

qt
þ = � ðuCÞ ¼ 0. (8)

A common tendency of the VoF method is that the interface may be smeared over many cells. Much research effort has

been spent recently (Ubbink and Issa, 1999; Qian et al., 2003; Kleefsman and Veldman, 2004) to develop new

techniques for solving the volume fraction equation in a way that keeps the interface sharp.

The original VoF method of Hirt and Nichols (1981) has a fluxing scheme that uses either upwinding or a

downwinding donor–acceptor cell approach depending on the local orientation of the interface. The advantage of the

upwind scheme is that it is stable, but it is diffusive and may spread the interface over many cells. The downwind scheme

is unstable, but sharpens the interface and so is advantageous in interface tracking. Various VoF fluxing methods have

been developed, most of which aim for a balance between the stability advantages of the upwind scheme and the front

sharpening advantages of the downwind scheme.

Here, we use Ubbink’s (1997) compressive differencing scheme for discretisation of the volume fraction equation

named CICSAM. In the CICSAM scheme, the cell face values of C, used in the discretised volume fraction equation,

are determined from a combination of the Convection Boundedness Criteria (CBC) value and the Ultimate Quickest

(UQ) value. The weighting factor used to combine the CBC and UQ contributions takes into account the orientation of

the interface and the direction of motion. This scheme is described in detail by Greaves (2004) and used for simulation

of water column collapse and subsequent interaction with an obstacle by Greaves (2005).
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3. Quadtree grids

Quadtree grid generation, grid reference numbering schemes, grid data retrieval and neighbour finding routines are

described in detail in previous publications [e.g. Greaves and Borthwick (1998), Yiu et al. (1995)] and so are not

discussed here. Similarly, the treatment of hanging nodes and the interpolation and extrapolation necessary during

quadtree grid adaptation are described by Greaves (2004, 2005). Quadtree grids can be readily adapted by the addition

and removal of panels throughout a time dependent simulation. For the wave simulations, grid refinement is used to

follow the movement of the interface and for the separated flow case, grids are refined in areas of high flow vorticity.

Remeshing of the grid operates by dividing a cell into four if it lies within a specified distance from the interface or for

separated flow cases has a vorticity value greater than a specified maximum. Derefinement takes place by removing four

sibling cells and replacing them with their parent if each of the four sibling cells lies away from the interface band or, for

separated flow cases, if each has vorticity less than a specified minimum. Velocity and pressure variables are

interpolated onto new cells using bi-linear interpolation from the neighbours of the divided cell. Alternatively, when

four sibling cells are removed and replaced with their parent, the variables assigned to the parent are the average of the

four sibling values. For the wave simulations, the grid is adapted at the edge of the interface band, which lies wholly

within either the air or water phase, and so the volume fraction for each of the removed siblings and their parent will be

either 0 or 1. The technique has been demonstrated for extreme free surface motions, including wave break-up and

spray by Greaves (2005).
4. Cartesian cut cells

Due to their Cartesian nature, smooth curves modelled by the quadtree grids will have a stepped approximation.

This is illustrated in Fig. 1, where a circular cylinder is located in the grid; it is clear that no matter how refined

the quadtree is at the cylinder, the smooth boundary will inevitably have a staircase approximation. This modelling

error can be eliminated by using the Cartesian cut cell technique, in which the smooth shape of the body is cut out

of the grid, leaving cut cells around the body boundary, as in Fig. 2. The quadtree grid is generated by recursive

subdivision about seeding points that lie around the surface of the cylinder. Cells within the quadtree grid are

then searched to identify those containing seeding points. A given boundary cell may contain more than one seeding

point, and the search continues until the first and last seeding point in each cell has been identified. The seeding points

can then be used to define the cut face and to assign a type to each cut cell. The type assignment depends on the

orientation of the cut face and is described by Yang et al. (1997). Once this has been assigned, parameters of the cut cell

such as fluid volume, centroid coordinates (at which variables are stored) and cell face coordinates may be readily

determined.

The cut cell process usually generates some very small cut cells around the boundary and these may require very small

time steps for stability. Small cut cells can be seen around the cylinder in Fig. 2, which is also shown enlarged in Fig. 3.

The problem of very small cut cells may be overcome by merging cut cells that have fluid volume less than a specified

minimum. If the specified minimum is 0.5 of the finest quadtree cell, merging produces the grid shown in Fig. 4 and may

result in some of the merged cells being larger than the finest quadtree cell. Tseng and Ferziger (2003) suggest an

alternative to merging, known as the Ghost-cell Immersed Boundary Method (GCIBM). In this method, the velocity

and pressure fields are extrapolated from neighbouring fluid cells to ghost cells, lying out of the fluid domain, in order to

enforce boundary conditions at the boundary. However, we have not implemented this approach here.

Special interpolations are used to calculate gradients and variables at faces for the finite volume scheme at these cut

cells. Following recommendations made by Qian et al. (2005) gradients for cut cells are calculated in two stages. First,

the fluid and solid gradients on the cut cells are calculated from neighbouring cell values with a slope limiter function

applied to prevent over- or under-shoots and to maintain a sharp interface. This is illustrated for the cut cell P shown in

Fig. 5.

Variables are interpolated to the fictional mirror node R. If no-slip wall boundary conditions are used, the pressure

and velocity are

pR ¼ pP � rPg ny RPj j
� �

, (9)

uR ¼ uP � 2 uP � nð Þn, (10)

where rP is the density at cell P, g is the acceleration due to gravity for wave cases, jRPj is the distance between nodes

R and P, n is the unit normal vector to the cut face and nx and ny are the unit vectors along x- and

y-directions, respectively. The fluid, superscript f, and solid, superscript s, gradients are calculated separately in each
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Fig. 2. Quadtree cut cell grid for a cylinder.

Fig. 1. Quadtree grid for a cylinder.
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coordinate direction:

Ff
x ¼ G

FE � FP

xE � xP

;
FP � FW

xP � xW

� �
and Ff

y ¼ G
FN � FP

yN � yP

;
FP � FS

yP � yS

� �
, (11,12)

Fs
x ¼ G

FR � FP

xR � xP

;
FP � FW

xP � xW

� �
and Fs

y ¼ G
FR � FP

yR � yP

;
FP � FS

yP � yS

� �
, (13,14)

where G is a slope limiter function and F represents a general variable and may be velocity or pressure. Here, the van

Leer limiter is used,

Gða; bÞ ¼
a bj j þ aj jb

aj j þ bj j
. (15)

Qian et al. (2005) also suggest other gradient limiters such as the k-limiter, which corresponds to the superbee or

minmod limiter depending on the value of k, and the hyperbee limiter.

Next, a length average technique involving the aperture length open to fluid and solid for a given cut cell is used to

convert the fluid and solid gradients to a unique gradient for each direction in each cut cell,

Fx ¼
DysF

s
x þ Dyf F

f
x

Dy
; Fy ¼

DxsFs
y þ Dxf Ff

y

Dx
, (16,17)
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Fig. 5. Calculation of gradients at a cut cell.

Fig. 3. Close-up of cut cells at the cylinder.

Fig. 4. Merged cut cells.
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where Dys is the distance jcdj in Fig. 5, Dyf is jbcj, Dxs is jdej, Dxf is jfej and Dx and Dy are the uncut cell side lengths jabj

and jafj. Finally, the overall cell gradient is a combination of the gradients in x- and y-directions

=UP ¼ Uxnx þUyny. (18)
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The value of a given variable may be determined at any position in the cut cell using

Uðx; yÞ ¼ UP þ =FP � r, (19)

in which r is the position vector from the cell centre to any position (x, y) within cell P. The face velocities at the centre

of each face for a cut cell are calculated in this way in order to determine convective fluxes and to calculate pressure

gradients in the momentum equations.

5. Results

5.1. Separated flow past a cylinder

The adaptive quadtree cut cell method is first tested for fluid flow past a cylinder at Reynolds number, Re ¼ ruind/

m ¼ 100. Here, d is the cylinder diameter and uin is the inlet velocity. The cylinder centre is positioned at 11.20d from the

inlet, 31.54d from the right-hand boundary and 21.37d from top and bottom boundaries (see Fig. 6). No slip boundary

conditions are used on the cylinder, free boundary conditions are applied on the right-hand, top and bottom walls and a

steady unidirectional inlet velocity, u ¼ uin, v ¼ 0 is applied on the left-hand wall. The grid is initially refined around the

cylinder boundary only, and as the vortex shedding flow develops, it adapts to areas of high vorticity. The quadtree grid

has maximum division level of 10 at the cylinder and in the adapted region as it develops and a minimum background

division level of 5. It is adapted every 20 time steps throughout the simulation and the non-dimensional time step size,

Dt ¼ Dtd/uin ¼ 0.001. Fig. 6 shows the adapted quadtree grid, Fig. 7 shows the velocity vectors close to the cylinder and

Fig. 8 the streamlines once vortex shedding has established at non-dimensional time, t ¼ 129. Fig. 9 shows the time

history of lift and drag force coefficients, calculated by integrating the pressure and viscous forces around the cylinder

surface. The Strouhal number, St ¼ fsd/uin (where fs is the vortex shedding frequency), is predicted to be St ¼ 0.143, the

mean drag coefficient to be cDave ¼ 1.36 and the rms lift coefficient to be cLrms ¼ 0.209, which agree reasonably well

with experimental and numerical data given by Zhou and Graham (2000) who recorded values of St ¼ 0.152–0.174,

cDave ¼ 1.29–1.82 and cLrms ¼ 0.14–0.34. The hydrodynamic forces are nondimensionalised using

cD ¼
D

1
2
r uinð Þ

2
and cL ¼

L
1
2
r uinð Þ

2
. (20)

5.2. Viscous waves in a container

5.2.1. Re ¼ 200

A linearised analytical solution for small amplitude viscous waves in a rectangular tank has been derived by Wu et al.

(2001) and is used to validate the new scheme for simulating viscous free surface waves. Wang et al. (2004) calculated
Fig. 6. t ¼ 129 adapted quadtree grid.
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Fig. 8. t ¼ 129 streamlines.
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Fig. 9. Time history of cD and cL for Re ¼ 100.

Fig. 7. t ¼ 129 velocity vectors.
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similar viscous wave cases numerically. The length of the tank, b ¼ 2h, where h is the mean water depth. The wave

has initial surface elevation profile, Z ¼ a cos(2px/b), where x is measured along the length of the tank and a ¼ 0.02h is

the wave amplitude (see Fig. 10). The Reynolds number is calculated from Re ¼ h
ffiffiffiffiffi
gh

p
=n, in which n is the kinematic

viscosity. Initial conditions for velocity are zero, the pressure is set to hydrostatic and no-shear boundary conditions

are applied on walls [following Wu et al. (2001)]. Initially, Re ¼ 200 waves are simulated using a series of adapting

quadtree grids with refinement in a band surrounding the free surface and with nondimensional time step

dt ¼ dt
ffiffiffiffiffiffiffiffi
g=h

p
¼ 0:00044. The time step used for these calculations was arrived at by trial and error. The reconstructed
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Fig. 10. Layout sketch for wave simulations.

Fig. 11. Free surface and adapted quadtree grid: (a) t ¼ 0, (b) t ¼ 1.754.
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free surface and adapted quadtree grid are plotted in Fig. 11(a) at nondimensional time, t ¼ 0 and (b) at the first peak,

t ¼ 1.754. In this case, the maximum division level is 7 and the minimum division level (background grid resolution) is 5

and it will be referred to here as a 7� 5 quadtree grid. The band around the interface is 10 cells wide. The number of

cells in the interface band is arrived at by selecting the smallest band that will produce wave elevation history results to

the same accuracy as a uniform grid of the maximum division level.

In Fig. 12, results of calculations of the Re ¼ 200 viscous wave in a tank using quadtree grids of different resolution,

6� 4, 7� 5 and 8� 6 are plotted together with those calculated on a 128� 128 square grid which has cells uniformly the

same size as the smallest in the 7� 5 quadtree grid. The wave elevation is nondimensionalised by the initial wave

amplitude, Z ¼ y/a. The figure shows the wave elevation history recorded at the centre of the tank and the results all

agree well with differences being discernable only at later times in the simulation. Results calculated on the 7� 5

quadtree and equivalent uniform grid are identical, confirming that there is no loss of accuracy through the use of

adapting quadtrees. Fig. 13 shows wave elevation histories calculated using four different time steps on the 7� 5

quadtree grid, which converge to the smallest time step solution. The results in Figs. 12 and 13 together demonstrate

spatial and temporal grid convergence of the method.

In Table 1, typical grid size and CPU per time step are given for a series of quadtree and equivalent uniform grids. All

calculations were made on a SUNFIRE 480R with 16Gb RAM, 4� 900MHz UltraSPARC-III+ CPUs, 2� 36Gb

(internal) HDs running Solaris 8. It is shown earlier that through using adapting quadtree grids refined at the interface

the same accuracy is achieved as with a grid refined uniformly throughout the domain. Furthermore, use of adapting

quadtree grids leads to significant savings in both grid size and CPU; the 7� 5 quadtree grid contains approximately 4.0

times less cells and requires approximately 4.2 times less CPU than the equivalent uniform grid.
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Fig. 13. Wave elevation history at the centre of the tank: comparison of time step.
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Fig. 12. Wave elevation history at the centre of the tank: comparison of quadtree grid sizes.

Table 1

Summary of grid size and CPU data averaged over ten time steps

Grid type Max level Min level Typical no. of cells CPU per time step (s)

Uniform 5 5 1024 0.200

Quadtree 5 3 304 0.062

Uniform 6 6 4096 1.348

Quadtree 6 4 1048 0.436

Uniform 7 7 163 84 9.465

Quadtree 7 5 4057 2.225

D.M. Greaves / Journal of Fluids and Structures 23 (2007) 1149–11671158
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5.2.2. Re ¼ 2, 20, 200 and 2000

In Figs. 14–17, time history results are plotted for waves in fluid of different viscosity, Re ¼ 2, 20, 200 and 2000,

together with the analytical solution published by Wu et al. (2001). In each case, the wave period is generally predicted

well by the numerical scheme, but the wave amplitude is greater than the linearised analytical solution. One would

expect the numerical solution to approach the linearised analytical solution more closely as the amplitude is reduced

and to deviate further from it at larger amplitudes; this effect is observed to some extent in Section 5.2.3, but does not

explain the large difference in amplitude in Figs. 14–17. The numerical prediction is closer to the linearised analytical

solution for larger Reynolds number cases in which the fluid is less viscous. The convection terms are eliminated from

the Navier–Stokes equations in the linearised analytical solution. Thus, the greater deviation from the analytical

solution for the lower Reynolds number cases suggests that the convective terms have a stronger influence on the fluid

motion than in the less viscous, higher Reynolds number fluid.
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Fig. 14. Wave elevation history at the centre of the tank: Re ¼ 2.
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Fig. 15. Wave elevation history at the centre of the tank: Re ¼ 20.
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Fig. 16. Wave elevation history at the centre of the tank: Re ¼ 200.
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Fig. 17. Wave elevation history at the centre of the tank: Re ¼ 2000.
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5.2.3. Investigation of wave nonlinearity

Calculations are next made for waves with Re ¼ 200 and a range of initial amplitudes, a ¼ 0.2h, 0.06h, 0.04h, 0.02h,

0.01h, in order to investigate the effect of nonlinearity and to test the method for large amplitude motions. Results are

summarised in Fig. 18. The four smaller amplitude cases all have similar time history behaviour, with differences

evident in the size of peaks and troughs for the first few oscillations only. The largest amplitude case, a ¼ 0.2h, however,

exhibits clear nonlinear asymmetry as the peaks are significantly sharper than the troughs. This is confirmed when the

wave profiles at the first five peaks and troughs are plotted together in Figs. 19 and 20 for linear and nonlinear waves. In

Fig. 19, the linear small amplitude wave, a ¼ 0.02h, can be compared with the nonlinear large amplitude wave,

a ¼ 0.2h, in Fig. 20. The velocity field and wave profile at the first peak and trough for the large amplitude wave are

plotted in Figs. 21 and 22. These show how the quadtree grid has adapted to follow the large motions of the free

surface, whilst maintaining a band of 10 cells around the interface.
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Fig. 18. Wave elevation history at the centre of the tank for Re ¼ 200 wave with initial amplitudes, a ¼ 0.2h, 0.06h, 0.04h, 0.02h, 0.01h.
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5.2.4. Waves in viscous fluid over a submerged cylinder

Preliminary results for viscous wave interactions with a submerged cylinder in the tank are presented here.

A submerged cylinder of diameter d ¼ 0.2h (where h is the undisturbed depth of water in the tank) is positioned at the

horizontal centre of the unit square tank at depth 0.5h below the mean water level. The fluid Reynolds number for the

wave, Re ¼ h
ffiffiffiffiffi
gh

p
=n ¼ 200 and the initial wave amplitude a ¼ 0.02h. A refinement band of 10 cells is maintained

around the cylinder boundary as well as the interface and the 7� 5 quadtree grid adapts dynamically at each time step.

It would be possible to use different levels of refinement at the cylinder and free surface if necessary, but a maximum

division level of 7 at both locations is used here. The calculation takes 3.11 s CPU per timestep using the SUNFIRE

480R mentioned above. The initial and adapted grids at the first peak are shown in Fig. 23 and the time history of the

wave recorded at the centre of the tank is plotted in Fig. 24 together with the wave-only case without a cylinder for

comparison. The results show that the presence of the submerged cylinder in the tank acts to damp out the wave motion

at the free surface. A slight time lag in the wave history is also evident in the cylinder case when compared with the

wave-only case in Fig. 24.
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Fig. 22. First trough and velocity field, a ¼ 0.2h.
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Fig. 21. First peak and velocity field, a ¼ 0.2h.
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Fig. 24. Wave elevation time history at the centre of the tank, Re ¼ 200.

Fig. 23. Free surface and adapted quadtree grid: (a) t ¼ 0, (b) t ¼ 1.754.
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The force on the cylinder is calculated by integrating the pressure and viscous shear stress around the cylinder and

recorded at each time step. The force can be nondimensionalised in the following way:

cF ¼
F

1
2
rU2

m

, (21)

where Um is the maximum velocity at the cylinder position when no cylinder is present. The force can be considered

comprising a component in phase with the velocity, U, the drag force, and a component in phase with the fluid

acceleration, dU/dt, the inertia force, and expressed using Morison’s equation,

F ¼
1

2
rU Uj jdcD þ

1

4
prd2 dU

dt
cM . (22)

Morison’s equation depends on experimental determination of the drag and inertia force coefficients, cD and cM.

Bearman et al. (1985) measured forces on cylinders in experiments using a U-tube to generate harmonically varying

fluid velocity and acceleration in-line with the cylinder. This restricts the fluid motion to a single component, so that

Morison’s equation can be applied and the drag and inertia components extracted from the measured force time history

by Fourier averaging.

A dominant force in the wave cases considered here is due to hydrostatic pressure, which can be eliminated by

subtracting the instantaneous hydrostatic components at each time step. What remains in the force is due entirely to the
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hydrodynamic effects under the wave. After removing the hydrostatic part, a Morison equation type analysis such as

given by Bearman et al. (1985) could be performed; however, the force coefficients cannot be compared directly as the

flow kinematics under a wave are more complicated than purely in-line velocities occurring in U-tube experiments.

Sarpkaya (1981) suggests that Fourier averaging may still be used for deriving cD and cM in regular waves, but is not

suitable for the cases calculated here, in which the wave is strongly damped by the fluid viscosity (Figs. 24 and 26). The

horizontal and vertical force coefficients (with the hydrostatic part subtracted) are plotted in Fig. 25.

Results are also calculated for a submerged cylinder under the Re ¼ 20 wave. Fig. 26 shows the wave history for this

case plotted together with the wave only solution and in Fig. 27, the time history of horizontal and vertical force

coefficients on the cylinder are plotted. The wave is damped by the presence of the submerged cylinder as found for the

Re ¼ 200 case above.

For each wave Reynolds number investigated, the horizontal force is approximately zero, the vertical force is much

larger and oscillates with the same frequency as the wave motion. If we consider the fluid kinematics under the centre of

the symmetric cosine wave, the velocity is mainly in the vertical direction and this explains why the horizontal
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Fig. 26. Wave elevation history at the centre of the tank, Re ¼ 20.
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Fig. 27. Time history of forces on submerged cylinder, Re ¼ 20.
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Fig. 28. Wave elevation history at the left-hand wall, Re ¼ 200.
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hydrodynamic force is insignificant compared with the vertical hydrodynamic force. However, the vertical

hydrodynamic force is exactly 180o out of phase with the wave motion and can be seen from Fig. 25 to be a

maximum when the wave trough is over the cylinder and the force is at its minimum when the wave crest is over the

cylinder. This suggests that the vertical hydrodynamic force is dominated by inertia and follows the vertical fluid

acceleration under the wave. For cases, such as this, in which the amplitude of the motion is small compared with the

diameter of the cylinder, it is to be expected that the force is dominated by the inertia of the accelerating fluid (Bearman

et al., 1985).

This conclusion is tested further by considering the forces on a cylinder submerged in a tank of water with an initial

elevation in the shape of a sine wave of wavelength twice the width of the tank, b. The wave elevation at the right-hand

wall is plotted in Fig. 28 both for the wave only and for the wave over a cylinder submerged at the centre of the tank,

depth h/2 below the mean water level. The wave motion is damped by the presence of the cylinder and in this case there

is a slight increase in the oscillation frequency. The hydrostatic component is subtracted from the vertical force, and the

time histories of horizontal and vertical hydrodynamic force coefficients are presented in Fig. 29. As the undisturbed

sine wave is asymmetric and has maximum horizontal velocity and zero vertical velocity, we would expect the
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Fig. 29. Time history of forces on submerged cylinder under a half sine wave, Re ¼ 200.
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horizontal force on the cylinder to be maximum and the vertical force to be approximately zero. This is evident in

Fig. 29, where the vertical force tends to approximately zero and the horizontal force oscillates with the same frequency

and in phase with the wave motion recorded in Fig. 28. The horizontal force is dominated by inertia and oscillates with

the horizontal fluid acceleration under the wave. When the wave peak is at the right-hand wall, the horizontal fluid

acceleration at the cylinder is at its maximum, and when the wave trough is at the wall, the acceleration is at its

minimum.
6. Conclusions

The adaptive quadtree volume of fluid method developed here shows great potential in the simulation of complex free

surface flows. The new method uses CICSAM differencing for advection of the interface together with a PISO-type

Navier–Stokes solution method for adapting quadtree grids. The adaptive quadtree results are in good agreement with

analytical and other numerical data, and a sharp interface is maintained at the free surface. Results are calculated on

adapting quadtree grids and equivalent uniform grids in which the panels are the same size as the smallest in the

quadtree grid. In this way, it has been found that the same accuracy may be achieved using the adapting quadtree

scheme as on the equivalent uniform grid and that a saving both in grid size and CPU is made.

The combination of dynamically adapting quadtree grids and Cartesian cut cells for a curved boundary is shown to

be well suited to simulation of vortex shedding flow past a circular cylinder and results compare favourably with

published data. The new method is applied to simulating linear and nonlinear viscous waves in a rectangular tank as

well as viscous waves over a submerged cylinder. For the wave-only cases, the wave period is predicted well, but the

amplitude is greater than that calculated analytically. The amplitude prediction improves in comparison with the

linearised analytical solution for waves in less viscous fluid. For the wave over submerged cylinder cases, the cylinder is

found to damp out and slightly alter the frequency of the wave motion. Hydrodynamic forces on the submerged

cylinder under the wave are shown to be dominated by inertia.

The method could be extended to three dimensions using adaptive octree grids with Cartesian cut cells, although it

would be very computationally expensive for practical cases. Measures to reduce the CPU time would have to be taken,

such as use of multigrid iterations and possibly a domain decomposition approach, in which the Navier Stokes viscous

model is combined with a fully nonlinear potential flow model.
Acknowledgements

The author is very grateful to the Royal Society for supporting this work through a Royal Society University

Research Fellowship, 2000–2006.



ARTICLE IN PRESS
D.M. Greaves / Journal of Fluids and Structures 23 (2007) 1149–1167 1167
References

Andrillon, Y., Alessandrini, B., 2004. A 2D+T VoF fully coupled formulation for the calculation of breaking free-surface flow.

Journal of Marine Science Technology 8, 159–168.

Bearman, P.W., Downie, M.J., Graham, J.M.R., Obasaju, E.D., 1985. Forces on cylinders in viscous oscillatory flow at low

Keulegan–Carpenter numbers. Journal of Fluid Mechanics 154, 337–356.

Causon, D.M., 1996. An efficient front tracking algorithm for multi-component fluid calculations with biomedical applications.

Zeitscrift fur angewandte Mathematik und Mechanik 76 (S1), 371–372.

Dommermuth, D.G., Yue, D.K.P., 1987. Numerical simulations of non-linear axisymmetric flows with a free surface. Journal of Fluid

Mechanics 178, 195–219.
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